MTH 203 - Quiz 1 Solutions

1. If G is a group in which $g^2 = 1$, for every non-trivial $g \in G$, then show that G is abelian. Give a non-trivial example of such a group G.

Solution. For arbitrary $a, b \in G$, by hypothesis we have

$$(ab)(ab) = a^2b^2,$$

which upon right and left cancellation yields

$$ab = ba$$
.

Thus, it follows that G is abelian. As we saw in class, the Klein-4 group U_8 is a group of order 4 in which each nontrivial elements has order 2.

2. Let G be a group and H < G such that [G : H] = 2. Then show that $H \lhd G$.

Solution. Since [G : H] = 2, we have $G/H = \{H, kH\}$, for any $k \in G \setminus H$. Since $G = H \sqcup Hk$, the right coset Hk can either equal the coset H or the coset Hk. If Hk = H, then it follows that $k \in H$ (why?), which contradicts the choice of k. Thus, it follows that Hk = kH for every $k \in G \setminus H$, and this also holds trivially for every $k \in H$. Therefore, Hk = kH for every $k \in G$, and so by assertion 3.1 (iii) of Lesson Plan it follows that $H \lhd G$.